Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes.

نویسندگان

  • Timothy J Flowers
  • Rana Munns
  • Timothy D Colmer
چکیده

BACKGROUND Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na(+) and Cl(-)) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na(+) and/or Cl(-) in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K(+) (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. SCOPE This review discusses the evidence for Na(+) and Cl(-) toxicity and the concept of tissue tolerance in relation to halophytes. CONCLUSIONS The data reviewed here suggest that halophytes tolerate cytoplasmic Na(+) and Cl(-) concentrations of 100-200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Sodium Chloride on Some Metabolic and Fine Structural Changes during the Greening of Etiolated Leaves

Plants respond to a saline environment by metabolic and morphological changes (16, 17, 20). Most of the information on salt effects stems from work on plants adapted to saline conditions, the halophytes, or from mesophytes which were grown under conditions of increased salinity for prolonged periods. In the present work some short-term effects of saline conditions on greening leaves of an unada...

متن کامل

Sodium Chloride Salt Tolerance Evaluation and Classification of Spring Rapeseed (Brassica napus L.)

Abiotic stresses such as salinity, are factors that severely affects agricultural production. To evaluate the effects of salinity on some morphological and physiological traits related to salt tolerance of 22 genotypes of spring rapeseed cultivars in the vegetative growth stage, an experiment was conducted as a split plot form based on Randomized Complete Blocks Design using levels of salinity:...

متن کامل

The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride

Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...

متن کامل

Ion homeostasis in a salt-secreting halophytic grass

Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides...

متن کامل

Transcriptome Analysis of the Response to NaCl in Suaeda maritima Provides an Insight into Salt Tolerance Mechanisms in Halophytes

Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2015